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Abstract

Finite-time stability analysis is a powerful tool for understanding the long-term behavior of epidemiological models and
has been widely used to study the spread of infectious diseases such as COVID-19. In this paper, we present a finite-time
stability analysis of a stochastic susceptible-infected-recovered (SIR) epidemic compartmental model with switching
signals. The model includes a linear parameter variation (LPV) and switching system that represents the impact of
external factors, such as changes in public health policies or seasonal variations, on the transmission rate of the disease.
We use the Lyapunov stability theory to examine the long-term behavior of the model and determine conditions under
which the disease is likely to die out or persist in the population. By taking advantage of the average dwell time method
and Lyapunov functional (LF) method, and using novel inequality techniques the finite-time stability (FTS) criterion in
linear matrix inequalities (LMIs) is developed. The finite-time stability of the resultant closed-loop system, with interval
and linear parameter variation (LPV), is then guaranteed by state feedback controllers. By analyzing the modified SIR
model with these interventions, we are able to examine the efficiency of different control measures and determine the
most appropriate response to the COVID-19 pandemic and demonstrate the efficacy of the suggested strategy through
simulation results.

Keywords: Lyapunov method, Linear matrix inequalities, Finite-time stability, Switching signal, Stochastic
disturbance.

1. Introduction for the COVID-19 symptoms. To fully understand the
impact of SARS-CoV-2 and make informed decisions, it’s
crucial to gather more information about its epidemiolog-
ical features, such as transmission dynamics, incubation
period, and mortality rate. Further studies are needed to
gain a more complete understanding of this novel virus.
This has important implications for surveillance and con-
trol activities [2, 5]. Despite some countries succeeding
in controlling the virus’s spread, others have seen uncon-
trollable outbreaks. To address the situation, a closed-loop
control system, which adjusts the input based on the moni-
tored output, may be a viable solution. The pandemic has
brought unprecedented challenges, but solutions such as
closed-loop control systems offer hope for effectively man-
aging the spread of COVID-19 [6]. This system can help
authorities monitor the situation and make necessary ad-
justments in real-time to achieve the desired outcome. Im-
plementing such a system can help mitigate the impact of
the pandemic and bring the situation under control, lead-
ing to faster recovery for communities and the global econ-
omy. In the context of controlling the spread of COVID-19,
a closed-loop control system (see Figures 1-2) could involve

The COVID-19 pandemic has had a significant impact
on the well-being of individuals and economies globally.
In order to control the spread of the virus, it is crucial
to comprehend the transmission mechanisms and develop
effective strategies to prevent further spread. This in-
cludes measures such as personal protective equipment,
social distancing, and vaccination efforts [1, 2]. Addi-
tionally, tracking the spread of the virus and collecting
data on the outbreak is crucial in understanding the evo-
lution of the pandemic and guiding public health inter-
ventions. Models to analyze the spread of diseases, such
as the susceptible-infected-recovered (SIR) epidemic com-
partmental model, are commonly used to understand in-
fectious diseases and inform public health decisions. The
emergence of a new coronavirus, known as SARS-CoV-2,
was identified in China in late 2019 and is the cause of the
COVID-19 pandemic [1, 3, 4]. However, much remains
unknown about the virus, including the incubation period
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continuously monitoring the number of cases, deaths, and
other relevant metrics, and using this information to ad-
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just public health interventions such as mask mandates,
social distancing measures, and vaccination efforts.

Figure 1: The structure of COVID-19 virus.
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Figure 2: Closed-loop of COVID-19.

For example, if the number of cases is increasing rapidly,
the control system could implement stricter mask man-
dates or social distancing measures in an effort to slow the
spread of the disease. On the other hand, if the number
of cases is decreasing, the control system could relax these
measures to allow for a gradual return to normalcy [7, 8].
By continuously monitoring the output and adjusting the
input accordingly, the closed-loop control system can help
to maintain the spread of the disease at a manageable level.

In recent decades, epidemiology has been defined as
the study of disease spread with the goal of tracking the
variables that are essential for its development. Mathe-
matical models are widely utilized in the investigation of
epidemiological issues. Most of the models for infectious
disease transmission descended from the conventional SIR
model, which was proposed in 1927 (see [9]). Recently,
research on various versions of the mathematical model
of the expansion of infectious diseases, known as SIR epi-
demic models, has a long history, and all these approaches
are still very current and widely known in research (see, for
example, [10, 11, 12, 13]). Epidemic models are influenced
by environmental noise, which is an important factor in
reality and may result in a more realistic outcome than
deterministic models. Recent advancements in stochastic
differential equations allow the inclusion of stochastic ele-
ments into models of biological events, whether it is ran-
dom noise in the differential equation system or variations

in environmental parameters. The study of population dy-
namics in random settings examines population size vari-
ations influenced by stochastic external factors. Research
has been done on stochastic biological systems, as seen
in [14, 15]. The proposed approach, which incorporates
real-time data into outbreak disease progression simula-
tions and constant updates, can provide a more accurate
short-term forecast compared to the traditional mean field-
theoretic SIR model. This is because the limited knowl-
edge of the incubation time and virus exposure has less
impact on forecasting the progression of the pandemic in-
fection.

Research supports the use of pulsed interventions, par-
ticularly in seasonal infectious diseases such as influenza
and childhood diseases (measles, chickenpox, and mumps),
where seasonal changes initiate periodic epidemics, often
with an annual pattern. The switching theory has been
shown to be suitable as a model of seasonal forcing in epi-
demiology, as shown in various articles (see, for example,
[16, 17,18, 19]). However, a significant distinction between
these and our study is that we suggest and conceptually
justify switching to considerably minimum time periods.
Recently, a publication [20] in response to the COVID-
19 pandemic proposed irregular, non-periodic quarantine
measures with extended lockdown duration’s. To analyze
the impact of this approach, we develop a finite-time dy-
namics model that takes into account the parameters of
the proposed system. Using this model, we estimate the
number of infections, deaths, and recoveries over a speci-
fied number of future days. This model can provide valu-
able information on the efficacy of proposed quarantine
measures and inform decision-making about the pandemic
response.

Finite-time (FT) stability analysis, introduced by Do-
rato in 1961 [21], is a useful method for analyzing a sys-
tem’s transient response. A system is considered FT sta-
ble if its state stays within a specified threshold within a
set time frame, given an initial condition constraint. Lya-
punov theory and linear matrix inequalities (LMIs) have
made significant advances in the stability analysis of vari-
ous systems, including linear continuous systems (see, e.g.,
[22, 23, 24, 25]), and discrete systems (see, e.g., [26, 27]).
Stability is one of the most important things to study in
dynamic systems. Most research on stability focuses on
asymptotic or exponential stability, which is stability over
an infinite amount of time [28, 29, 30]. However, in sev-
eral potential implementations, the key issue is the FT
stability of a system, which helps to maintain the system
behavior/state within the required boundaries in a speci-
fied FT interval ( see [31, 32, 33]). Furthermore, FT ap-
proach and the model of switched systems have currently
received more interest, as switched systems may be utilized
to represent a variety of important plants with switch-
ing [28, 29, 30]. In [34], the authors exploited nonlinear
impulsive switching systems to implement finite-time H,
dynamic output feedback control. Authors in [35], pro-
posed finite-time stability of switched positive linear sys-



tems. The authors established the asymptotic behavior of
a regime-switching SIR epidemic model with degenerate
diffusion in [36].

The development of efficient methods for FT stabil-
ity analysis, based on Lyapunov theory and LMIs, has in-
creased the practicality of this approach. These advance-
ments have allowed for the analysis of a wider range of sys-
tems and have provided useful insights into the transient
behavior of these systems. Recently, the authors described
the stochastic switching SIRS epidemic model with non-
linear incidence and vaccination: Stationary distribution
and extinction in [37]. Despite the fact that an analytical
model for compartmental issues allows for the use of known
finite-time stability analysis, and switched systems, there
are no predictable prerequisites for establishing stability
in the Lyapunov sense in biological systems.

Recently, an autonomous LPV (Linear Parameter Vary-
ing) system is a type of dynamic system that can be mod-
eled and analyzed using linear mathematical models. The
standard continuous-time space-state formulation of an
LPV system is a mathematical representation of the sys-
tem’s behavior in terms of its states and inputs, and how
these evolve over time (see [38, 39, 40, 41]). It is well
known that the aggressive control measures and policies
(such as border screening, mask wearing, quarantine, iso-
lation, etc.), play an important role in administering effi-
cient interventions which control disease spread and hope-
fully eliminate epidemic diseases. The LPV framework
can also be used to model and control systems with un-
certainty varying over time, such as unmodeled dynamics,
disturbances, and parameter variations. In addition to its
modeling capabilities, the LPV framework also provides
a flexible and powerful framework for control design and
analysis. For example, LPV systems can be used to design
controllers that are robust to uncertainty and variations
in the system parameters (see [42, 43, 44]). This can be
achieved using robust control techniques, such as linear
matrix inequalities (LMIs) and semidefinite programming
(SDP). The COVID-19 LPV model in [6] was proposed
by using basis functions and showed to be useful for sta-
bility assessment and controller design. Up to now, SIR
epidemic model has been studied with various types of
stability analysis, but the FT stability analysis for the
Stochastic SIR model has not been well studied, which
motivates the present work.

Motivated by the above works, a stochastic SIR epi-
demic model is a variant of the STR model that incorpo-
rates stochastic elements, such as random fluctuations in
the transmission rate of the disease. These fluctuations
can be represented by a noise term added to the transition
rates in the proposed model. The main novelties of our
paper are as below.

e The suggested SIR model is quite extensive, and the
switched stochastic differential equations drive its
dynamics. And most other of the existing works
[11, 12, 36, 45, 46] can be respected as a special

case of this suggested model since we consider many
factors such as finite-time stability, LPV analysis,
stochastic disturbance, control effect, and unknown
parameters.

e Different from exponential /asymptotic stability anal-
ysis on infinite-time interval and design in [12, 36,
37]. In our paper, the FT stability criterion of switched
stochastic SIR model is obtained, which is more re-
alistic and theoretical. The way the system behaves
over a short period of time is particularly crucial in
some epidemic models.

e Good control system should ensure higher perfor-
mance in addition to stability. However, the sug-
gested model makes use of state-feedback control.
To the best of the author’s knowledge, this note is
the first time to examine finite-time stability analysis
for the stochastic SIR epidemic model.

e For the FT stability analysis of the proposed system
model with switching approaches, acceptable LF are
developed using integral inequality techniques and
several new suitable criteria, which may be expressed
in terms of linear matrix inequalities (LMIs).

e Numerical simulations are provided as a last step to
show the efficacy and application of the ideas pre-
sented. Some standard notations and their specifi-
cations are given in Table 1.

Notations Specification

R"™ Euclidean space of n dimensions

R The real m x n matrices

P>0 P is symmetric and positive-definite
P>0 P is symmetric and positive semi-definite
pPT P represents the transpose of the matrix

Table 1: Notations and specifications.

2. Mathematical Modeling of SIR

The proposed control method is rooted in the nonlinear
dynamics of SIR models, a widely studied compartmen-
tal approach in epidemic modeling. The SIR model is a
simple compartmental model that divides the population
into groups with similar characteristics, making it easier to
model infectious diseases. This specific strategy focuses on
the deterministic version of the SIR model, which serves
as a building block for more complex models.

The diagram in Figure 3 depicts the flow of people be-
tween different categories during an outbreak, as outlined
by the SIR model. According to the model, individuals can
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Figure 3: Schematic diagram of SIR.

Susceptible

contract the disease and a subset of them may gain immu-
nity, transitioning into the R compartment which repre-
sents those with immunity. Before delving into the details
of the transition parameters, it is important to establish
a clear understanding of the dynamics of the SIR model.
This can be done by using a differential equation, which
provides a mathematical description of the relationships
between the variables involved in the model. Let us define
the time(t)-dependent variables in Table 2:

State variables Meaning

S(t) The susceptible individuals at ¢
1(t) The infected individuals at ¢
R(t) The recovered individuals at ¢

Table 2: State variables and their meanings.

Thus, the SIR model is of the form

ds(t) BS(t)I(t)
a0
I(t t)I(t
a1kl OOl (1)
R — 101y - o),

S(0) > 0, 1(0) > 0, R(0) > 0.

Here S(0), 1(0), and R(0) are the initial population size
of the susceptible, infected, and recovered individuals. It
is assumed that the total population, denoted by N, is
constant and equal to the sum of these three categories:
S(t) + I(t) + R(t) = N. The parameters in the model (1)
are summarized in Table 3:

Parameter Meaning

A The influx of individuals into S

I5) The transmission coefficient between
compartments S and [

k The value of inhibitory effect

1) The natural death rate of S, I and R
compartments

¥ The rate of recovery from infection

€ The disease-induced mortality rate

Table 3: Explanation of the parameters.

e The parameter 3 represents the contact rate, which
is calculated as the average number of contacts per
person per time multiplied by the probability of dis-
ease transmission in contact between a susceptible
and an infected individual.

e The incidence rate, represented by 5SI/(1 + kI), is
considered saturated in nature, which means that
it has a ’psychological’ or inhibitory effect on the
transmission of the disease [47]. The value of this
effect is measured by the parameter k.

e The parameter v plays a crucial role in the SIR
model as it represents the transition rate from the
infected class to the recovered or immune class. It
is calculated by dividing the number of individuals
who recover or die within a day by the total num-
ber of infected individuals at that time. This rate
is expressed as v = 1/D, where D is the length of
time that an individual is infected. Understanding
the value of 7 is important, as it provides informa-
tion on the rate at which the infected population is
decreasing and the rate at which the recovered pop-
ulation is increasing.

In [48], the authors studied the model (1) with limited
medical resources. Since we have explained the basic re-
production ratio before for the SIR model, using the next
generation method in [49], Ry is given by

BA

Ry= —————.
T 56+ +e)

The value of Ry determines the possible spread of the
disease within a population. If Ry < 1, it means that on
average, an infected individual will infect fewer than one
other person, and the disease will eventually die out. How-
ever, if Ry > 1, it means that an infected individual will
infect more than one other person, and the disease will be-
come endemic. To understand the dynamics of the disease
spread, it is enough to focus on the first two equations of
(1), as they do not depend on the number of recovered
individuals. We can gain insight into the interactions be-
tween susceptible and infected populations by analyzing
the subsystem which is

is . psI
g?_A_1+kI_5S’ o)
_ _ 2

5(0) > 0,1(0) > 0.

Further, the effective reproductive number, R., is a
measure of the average number of secondary cases gener-
ated by one infectious case during an epidemic. To cal-
culate this number, the basic reproductive ratio is mul-
tiplied by the number of susceptible individuals at time
t, represented as R, = Ry * (S(0)/N). When the value
of Ro * (S(0)/N) < 1, it indicates that an infected indi-
vidual is spreading the disease to fewer than one person
on average, leading to a long-term decrease in the num-
ber of infectious individuals, referred to as a disease-free
equilibrium. Model (2) always has a unique disease-free
equilibrium at Ey = (A/4,0). The situation changes when
Ro*(S(0)/N) > 1. This means that on average an infected



person will spread the disease to more than one person,
who will then infect more individuals, etc. This results
in an outbreak. For example, in the case of COVID-19,
we know that it is possible for the virus to be transmitted
from person to person.

3. Existence and Stability of Equilibria

3.1. FEuxistence

From a biological point of view, it is interesting to de-
termine the disease-free equilibrium and the co-existence
/ endemic equilibrium such that a population is a positive
number. The disease-free equilibrium Ey = (4,0) is al-
ways exists. When Ry > 1, the model (2) has a unique
endemic equilibrium E* = (S*, I*). It is achieved by solv-
ing the following equations.

e 35 =0, e (0+v+€) =0, (3)
which yields
E* = (87,1
B <Ak+6+7+e BA—6(6+7+6))
B+6ok T (6+7+e)(B+kd)
B <Ak+5+7+e (Ro — 1)BA )
B+0k " Ro(d+7+e€)(B+ ko)
Theorem 3.1. e If Ry <1, then (2) has no endemic
equilibria.

e If Ry > 1, then (2) has a unique endemic equilibrium
E*(S*,I*).

3.2. Local stability
Theorem 3.2. For (2), we have

o The disease-free equilibrium Fy is locally asymptoti-
cally stable if Ry < 1 and unstable if Ry > 1.

o If Ry > 1, then the endemic equilibrium E* is locally
asymptotically stable.

ProOOF The Jacobian matrix at Fy is given by

-5 ,%
Jg = .
Eo ( 0 354—(5+’y+6)>

Ey is locally asymptotically stable if and only if all eigen-
values of Jg, have a negative real part. The eigenvalues
can be determined by solving the following.

55—\ _BA
det o =0.
( 0 ’{;*—(5+v+e)—>\>
It is clear that the eigenvalues are: \; = —§, Ay = % -
(04~ +e€). Since A1 and Aq are negative, it is required that
BA

T<(5+’Y+€),

which is
Ry < 1.

The Jacobian matrix at E* is given by

— 1+kI* 1+kI*
Jpe = BI* BkS*I* :

1+kI* T (kT2

The eigenvalues can be determined by solving the follow-

ing.
_§— BTy _=BS* _
1+kI* 1+kI*)2 _
det e Q ﬁ(kS*I*) - =
Tkl (I+kI)2

The characteristic polynomial is given by:
M — trace(Jg< )\ + det(Jg-) = 0.
When Ry > 1, it is clear that

| B BRS*IY
1+ &I+ (14 kI)?

trace(Jg«) = —0 < 0.

and

det(Jg+) = (5_‘_%) (%)

BS* BI~
+ ((1+k1*)2> (1+k1*) >0,
by the Routh-Hurwitz criterion, the real parts of eigenval-
ues are negative, then E* is locally asymptotically stable.
O

Next, let us take the default values of the parameters from
[48] as

A =16, =001, k=0.001,
§=0.1, y=0.12, ¢=0.2. (4)

To start, we need to determine a valid range of parame-
ters for the model (2). One way to do this is to choose spe-
cific values for the parameters in (4) such that the result-
ing equilibrium point has positive values. This indicates
that the system remains biologically meaningful. Further-
more, the phase portrait is depicted for the deterministic
model (2) with the values in (4) has the reproduction rate
Ry = 3.80952 > 1 for 8 = 0.01 and there exists an endemic
equilibrium E*, which states that the diseased population
will persist is shown in Figure 4. The equilibrium E* is
globally asymptotically stable, which implies that the dis-
ease will eventually spread. Also, for the value 8 = 0.0025
the disease will die out such that Ry = 0.952381 < 1 and
the endemic equilibrium disappears, only the disease-free
equilibrium exists as shown in Figure 5. Stable dynamics
in the time series plot for susceptible, infected, and recov-
ered populations are depicted in Figs. 6, 7, and 8.

In the next section, we will examine the stochastic de-
terministic STR model.
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Figure 4: The phase portrait of the model (2) with parameter values

given in (4). Eo = (160,0) is a saddle point and E*(43.16,27.81) is
globally asymptotically stable.
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Figure 5: The phase portrait of model (2) with parameter values
given in (4) with 8 = 0.0025. Ey = (160, 0) is globally asymptotically
stable.
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Figure 6: The time series for the susceptible individuals of the model
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4. Stochastic Epidemic Models

The environment can sometimes change randomly and
subject population systems to disturbances. This means
that due to environmental uncertainty, the parameters used
in epidemic models may not be definite and may fluctuate
around certain values. Because of this, there is growing in-
terest in stochastic epidemic models that incorporate ran-
domness and stochastic. Stochastic epidemic models can
provide a more realistic perspective compared to their de-
terministic counterparts (see [11, 50, 51]). Stochastic mod-
els aim to address the uncertainties in epidemic models by
considering randomness and fluctuations. In populations

(0] 20 40 60 80 100
t

Figure 7: The time series for the infected individuals of the model

(1).

(0] 20 40 60 80 100
t

Figure 8: The time series for the recovered individuals of the model

(1).

susceptible to environmental changes, the parameters used
in epidemic models are not constant and may fluctuate
around typical values. This results in a more realistic de-
piction of the spread of disease, compared to deterministic
models [52]. As a result, an increasing number of people
are turning to stochastic epidemic models to more accu-
rately reflect the spread of disease in the face of environ-
mental uncertainty [53, 45]. Studies have shown that these
models can provide a deeper level of understanding of the
dynamics of disease spread, and are crucial in the devel-
opment of effective disease control strategies (see [54, 46]).
In this study, the approach taken is similar to that
of a previous study by [11], where the authors assumed
that the external noise was proportional to the variables.
We also assume that the stochastic perturbations in our
model are of the white noise type, meaning that they are
directly proportional to the susceptible and infected pop-
ulations and affect the rate of change of these populations.
To account for the impact of a changing environment, we
include stochastic perturbation terms in the equations for
the growth of the susceptible and infected populations.
This leads to the following stochastic SIR model that re-
flects the model (2) with added environmental noise:

dsS = (A— ﬁSI —55) dt+015dBl(t),
1+ kI (5)
[ BSI
dI = <1 iy (5+’y+e)[> dt + o91dBs(t).



The presence of environmental uncertainty is incorporated
into the model (2) by adding stochastic perturbation terms.
These terms are proportional to susceptible and infected
individuals and influence their growth rates. To repre-
sent this influence, a stochastic differential equation is
created. The equation includes terms for the intensity
of environmental oscillations, represented by o1 and o2,
which are constant and known. Additionally, the equa-
tion includes independent standard Brownian motions, de-
noted by Bi(t) and Ba(t). The stochastic model does not
have a positive equilibrium. Therefore, it is not possible
to demonstrate the persistence of the model by demon-
strating the stability of a positive equilibrium, as is done
in the deterministic model. The stationary distribution,
which occurs as the solution fluctuates in the vicinity of
the equilibrium point of the related deterministic model,
can be viewed as a form of stability in a weak sense.

We conducted repeated simulations for the scenario in
which the population in the model (2) coexist. We kept
all parameters constant as in Figure 4 during these sim-
ulations and generated numerical results. The solution of
the stochastic model (5) with very small white o1 2 = 0.01
shows very small fluctuations in the trajectories given in
Figure 9, which is close to the trajectories of the deter-
ministic model (2) as in Figs. 6 and 7. As the intensity of
the noises gradually increases, we find that the population
is persistent. The three solution paths of the stochastic
model (5) with white noise 012 = 0.01 and its trajecto-
ries are given in Figure 10. For the larger white noise
01,2 = 0.05, the model (5) trajectories have higher fluctu-
ations in the trajectories plotted in Figure 11. And the
corresponding density function for oy 2 = 0.1 shows that
most of the infected population is concentrated near 25,
the disease will persist in the population as shown in Fig-
ure 12. Similarly, for oy o = 0.5, there are very high fluctu-
ations in the trajectories even the infected population size
reaches near 200, eventually, most of the infected popula-
tion stays near zero as given in Figure 13 and its corre-
sponding density function is given in Figure 14. However,
we can see that both populations will survive and persist
in the presence of suitable environmental white noise.

When the strength of white noise is increased, the dis-
eased population dies away (see Figure 13). The mean of
the individuals at o1 2 = 0.5 and its corresponding density
function are plotted in Figs. 15 and 16. The standard de-
viation of the individuals at o1 2 = 0.5 and its correspond-
ing density function are plotted in Figs. 17 and 18. Both
the mean and standard deviation of the individuals show
that the disease will persist in the population. Figure 10
and 11 show that small white noise can make the model
permanent. In summary, the addition of environmental
noise to population models can provide a more realistic
representation of the dynamics of real-world populations.
The results of our study suggest that the intensity of en-
vironmental noise can greatly impact the behavior of pop-
ulations, with lower levels of noise potentially promoting
outbreaks and higher levels of noise suppressing outbreaks.

Our findings highlight the significant role of noise in de-
termining the survival and extinction of populations and
demonstrate the complex nature of populations in the real
world.
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Figure 9: Solution curves of the model (5) with 01,2 = 0.05, initial
values S(0) = 20,1(0) = 2, and all other values are given in (4).
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Figure 10: Three solution curves of the model (5) with 01,2 = 0.05,
initial values S(0) = 20,1(0) = 2, and all other values are given in

(4)-

We can rephrase the statement as follows: The dy-
namic behavior of the susceptible and infected populations
can be described by a state vector xz(t) = [S*(¢)’, I*(t)"],
and the linear parameter-varying (LPV) system is repre-
sented by the Jacobian matrix near the equilibrium point.
The stability of the equilibrium point of the LPV system
is determined by the eigenvalues of the Jacobian matrix,
which are functions of the system parameters. If all eigen-
values of the Jacobian matrix have negative real parts, the
equilibrium point is considered stable, and the population
will remain in the neighborhood of the equilibrium point
over time. On the contrary, if any eigenvalue has a positive
real part, the equilibrium point is unstable, and the pop-
ulation will diverge from the equilibrium over time. The
stability of the equilibrium point is important in determin-
ing the persistence or extinction of populations.
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Figure 11: Solution curves for the model (5) with high noise 01,2 =
0.1, initial values S(0) = 20,1(0) = 2 and all other values are given
in (4)
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Figure 12: The histogram of the stochastic model (5) with o1 2 = 0.1.

dS* (¢)
a |
laqn]_
dt
The system’s state space representation takes into ac-
count the state vector x(t), which consists of the suscep-
tible and infected populations, and the Jacobian matrix
E5 that governs the dynamics of the states in the vicinity
of the equilibrium point. This Jacobian matrix is time-
varying, as it depends on the time-varying parameters 6(t)

and I*(t), and can be represented in polytopic or affine
form.

sI* —ps "

=0~ ThErr ARkD? [f; (t)] (©)

BI* BkS*I* . :
T+kT* T (1+kI%)2 1"(t)

@(t) =a(0(t))z(t), (7)

The matrix 4(0(t)) can be described in two ways, as
mentioned in the literature, either by means of an affine
configuration or a polytopic one. The polytopic descrip-
tion is created by combining m known vertices into a single
convex formation.

N
a(6(1) =) 0;(1)4, 6(t) € 0, (®)

j=1

where 4;, j =1,2,..., N is the polytope vertices and 0(t) =
(01(t),02(¢), ...,0n(t)) denotes a vector of time-varying pa-
rameters belonging to a compact set known as unit sim-
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Figure 13: Solution curves for the model (5) with with high noise
01,2 = 0.5, initial values S(0) = 20,(0) = 2, and all other values
are given in (4).
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Figure 14: The histogram of the stochastic model (5) with o1 2 = 0.5.

plex, which is given by

a-{o

The dynamic matrix 4(6(¢)) can be represented using
an affine form with IV interval time-varying parameters as
follows:

N
Zb’j:L 0j>03j_]-a27'“7N}' (9)

Jj=1

A(0(1) = A0+ Y_0;(0, 6;(1) € [07, 671, (10)

where 45, 7 =1,2,..., N is the known matrices and 67(t)
are time-varying parameters with given lower and upper
bounds provided by HJ-L and HJU, respectively. The poly-
topic form of the dynamic matrix 4(6(t)) of the LPV sys-
tem (6) is given by (7).

—BUI*+p) (" +p)]
ﬂ(e(t»:el(w[ . 0|
—BUIY +p) —(v"+p)]
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Figure 15: The evolution in time of the mean of the individuals over
1,000 trajectories with 01,2 =0.5 .
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Figure 16: The histogram of the stochastic model (5) for the mean
of individuals over 1,000 trajectories with 1,2 = 0.5.

—BUIY +p) —(YY +p)

+ 94(t) [ 6IU 0

where 0(t) = (61(t), 02(t),- - - ,04(t)) € Q. Moreover, using
(6) with (10), we get
—Bp —p -

A6(1)) = l 0

0
+ 6, (t) |f)

)
6
+02() [,3 0],
where 61 (t) € [0.25,0.4] and 65(¢) € [-0.22,0.9091].

Now, we consider the state-space description of the
stochastic LPV system to be expressed as follows:

da(t) =(A(0(t))x(t))dt + Ca(t)dw(t). (11)

The LPV system (11) has parameter matrices 4;(0(t))
and C. The initial state is represented by zy. The noise
process in the system is modeled as a Wiener process or
Brownian motion, denoted as w(-). This process is charac-
terized by a stationary independent differential increment
with zero means and is represented by dw(t) = £(¢)dt,
where E[dw(t)] = 0, t € Q. The state space represen-
tation of a stochastic switched linear parameter-varying
(SSLPV) system is given by a set of linear dynamic equa-
tions with time-dependent parameters that influence the
state of the system. These parameters enter the equation
of state as exogenous inputs. The SSLPV system’s state
space can be described by a set of matrices, including the
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Figure 17: The evolution in time of the standard deviation for the
individuals over 1,000 trajectories with 01,2 = 0.5.
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Figure 18: The histogram of the standard deviation for the individ-
uals over 1,000 trajectories with o1 2 = 0.5.

parameter matrices 2;(0(t)) and ¢, and the initial state
xo. The system also includes a stochastic process w(:),
represented by dw(t) = £(t)dt, which is characterized by
a stationary independent differential increment with zero
means and is typically modeled as a Wiener process or
Brownian motion.

da(t) =[Ay () (0(1))2(t) + Byryu(t)] dt
4 Ce(t)dw(t), t € [t T) = O,
ZL'(t()) =xo € Rn, (12)

where z(t) = [z1(t),22(t), - ,2,(t)]T € R™ represents
the state vector. The control input vector is u(t) € R™.
A,y (0(t)) € R™™, By € R™™ and ¢ € R™ ™ are
the real constant matrices, respectively; o(t) :(— S =
{1,2,---, N} denotes the switching signal. which is deter-
ministic, piecewise constant, and right continuous. When
t € [tg,tr+1), subsystem oy is activated. For the sake of
clarity, we refer to the switching signal as o (¢) = 4 through-
out this study.

The matrices of the state space system 4;(6) are sub-
ject to uncertainties in the real parameter ¢; and obey the
real convex polytopic model, that is, [4;(0)] € 2, where

N
0; >0, 0;= 1}. (13)
j=1

The use of switched-signal finite-time control in the

N .
Q= {zi(e) = Zajzg



SIR stochastic model represents a significant advance in
the field of epidemic control. By addressing the challenges
posed by uncertainty and randomness in the spread of dis-
eases, this control strategy provides a powerful tool to ef-
fectively control outbreaks and protect public health. The
ability to handle multiple control inputs and switch among
them in real time, guarantee finite-time convergence, re-
duce control effort, and provide probabilistic predictions
and decisions makes this approach a promising solution
for epidemic control in a stochastic environment. The goal
of this study is to develop finite-time stability constraints
for the system (12) and then construct a state feedback
controller based on those conditions.

u(t) = Kix(t) (14)
for the system (12), where K; denotes the gain matrices to
be designed. First, we define finite-time stochastic stabil-
ity and stabilization for unforced stochastic systems using
the following definition.

Definition 4.1. [55] Stochastic switched system

dz(t) =2l z(t)dt + ca(t)dw(t), t € [to,T] = Q,

J?(t(]) =g € Rn7 (15)

is said to be finite-time stochastically stable (FTSS) in
relation to (c1,cq, T, R), if

2 (0)Rx(0) < ¢1 = B[z (t)Rx(t)] < ca,
where ¢; > 0, ¢ > cy.
Definition 4.2. [55] Stochastic switched control system

dz(t) =[2 z(t) + Bu(t)]dt + cx(t)dw(t), t € [to, T] = Q,
.’L‘(t()) =xg € Rn, (16)

is said to be FTSS, if there exists a control u(t) = K;z(t),
such that
dz(t) =[2 + B, K,]z(t)dt + cz(t)dw(t),  (17)

is finite-time stochastically stable with respect to (c1, ¢2, T, R),
if

2T (0)R2(0) < ¢1 = B[z (t)Rx(t)] < c2,
where ¢; > 0, ¢ > c1.

Definition 4.3. Consider the switching signal o and scalar
t € [to,T) = R, let N,(¢,T) represent the number of dis-
continuities of o over [¢t,T]. If

T—t
N,(t,T) < No + .

a

Then the constant 7, is called the average dwell time
(ADT) and Ny the chatter bound.

10

Lemma 4.4. [55] For the stochastic system (15), suppose
that there exist a €2 function V(x), two class J#5, func-
tions oy and aw, and a class £ function as, satisfying

(o) < V() < o), (19)
LV() = P ha) + el (@) Y g(a) < oD
19

Then, the equilibrium = = 0 of (15) is globally quadrat-
ically stable.

Remark 4.5. Let z(-) is an Ito process fulfills (15), and
g(+,+) a twice continuously differentiable function on Q €
R™. Then the procedure y(t) := g(t, z(t)) is carried an Ito
procedure once more, and

o

T {(Coe) (Gl x))Cx(t)}}dt

+ (Azg(t, 2))T cx(t)dw(t).

dg(t, x)

o (Aaglt ) At

where A, and ¢, represent the gradient and the Hessian
matrix in relation to x.

Lemma 4.6. (Gronwall inequality) Let 9(¢) be a nonneg-
ative function such that

t
19(15)§0+A/ d(s)ds, 0 <t <T,
0

where C, A > 0. Then, we have

I(t) < Cet, 0<t<T.

5. Finite-Time Stability

In this part, we will focus on the mean square finite-
time stable (MSFTS) of the SSLPV system (15).

Theorem 5.1. Given scalars (c1,c2,T), ¢1 < ¢a, and ma-
trix R, if there exist scalars @ > 0, p; > 1, and positive
definite symmetric matrix P; € R"*"™, ¢ € S, such that the
following LMIs hold:

p. g7 p. g\T _ P, T p.
Pal + (Pa))" —ob; c' B <0, (20)
* *Pi

among them P; = Rz PR2. Then, if the subsystems meet
the following conditions for switching signals, they will be
finite-time stable with respect to (¢1,c2, T, R),

T*logjii

T > T = i€ Ss), 22
bi = b log[i?%?} . OéiTS ( s) ( )
. . logit; .

iy S Ty = =k, (i € 5), (23)

(2



where T° = >, ¢ T7(0,T) and T = 3", 5 T7(0,T).
Proor Consider the following Lyapunov function:
Vi(a(t)) = 2™ (t)Pa(t). (24)

Using Lemma 4.4, along the trajectory of the system
(15), we have the following.

dVi(x(t)) = LVi(2(t))dt + 227 (t) Pica(t)dw(t),  (25)

where

LV;(z(t)) =227 (t) Pl x(t) — azT (t) Pa(t)
+al (t)CTPica(t) + aVi(x(t)

:xT(t) <P,L'leij + (Plﬂlzj)T —ab;
+ cTPic)w) +aVi(z(t)).

When the following conditions are met, it is clear that
Pl + (Pa)T —aP,+ cTPc <0. (26)

By using Schur complement lemma, then (26) is equiv-
alent to (20) and guarantee with o > 0

LV;(z(t)) — aVi(z(t)) <0 (or)

LVi(2(t)) < aVi(z(t)).

(27)
(28)
Moreover, integrating both sides of (27) over the in-

terval [tg,t] and taking the mathematical expectation, we
have the following.

E[V}(x(t))]<E[Vi($(tk))}+a1:/ E[Vi(z(s))lds. (29)

tr

With Lemma 4.6, we get

E[V;(x(t))] < E[Vi(a(ty))]e ). (30)
Noticing that
w(te) = (ty),
and we get
Vi(a(tr)) < Vi (2(ty)- (31)
Combining (30) and (31), we have the following.
E{Vi(2)} < e THE{V (2 (t;)- (32)

By using Definition 4.3, the connection of (32), it is
not difficult to check within ¢ € [0, T7,

E{Vi(x)} < fiie®iRE{V; (2(t;,_,)}

_N$(0,T) _N2(0,T)
< T 00 I] &
1€Ss 1ESy

eXies, iTi O+ es, T ODE(Y ((2(t))}. (33)

11

Accordingly, to the derivation, the following two in-
equalities hold:

E{Vi(2)} = E{a" () Pa(t)}
E{z" (t)R? P,R?x(t)}

> apEfa (t)Ra(0)}, (34)
and
o 1 1
V(o) (2(0))e* ={z" (0)Rz P, ()R 2(0)}
<A{ap,z"(0)Rx(0)}e
< {C_kpicl}eaiT. (35)
Then, combined with (33)-(35), one has
. NPOT) p NE(OT)
Efa” ()Ra(t)) < DRt Ilies. B - Lies,
eZiESs a; T; (0,T)+3 ;¢ g, @i T;*(0,T)
X o, ,
_ Yiess ie(o_yﬁmlﬂgﬁi+2ies Tiu;(g_’T) logfi;
. [apic]_]e bi w bi
4 1
eriesy ¥iTi (0.T)+3;es, @i Ti*(0,T)
X ar ,
B ziESS %logﬂz‘i’zigsu Tiu.,»_(?Lv’T) logpi;
_ [aPicl]e bi bi
N 1
QTS LTy
N — (36)
Qp,
Rewrite (43) and (43) as follows.
~ =Tbi ,—a’T?®
[aPi,Cl]Uz e < ¢, (37)
&p,
and
loeii;
8L gt <0, T > 0. (38)
Thi
Then, sub (37) and (38) in (36), we get
T [k)f#+a1j,j|Tu
E{z" (t)Rx(t)} < coet v , (39)
In other words,
E{zT (t)Rz(t)} < co. (40)

With respect to Definition 4.1, this implies the finite-time
stability of system (15). The proof is complete. |

6. Controller Design

In this part, we will concentrate on the FTSS of the
SSLPV system (17).



Theorem 6.1. Given scalars (c1,c2,T), ¢1 < c2, and ma-
trix R, if there exist scalars a > 0, f; > 1, and positive
definite symmetric matrix X; € R"*" 4 € S and nonsin-
gular matrices GG; such that the following LMIs hold:

A XIcT
R R m
Xi < X (42)

Then, if the subsystems meet the following conditions for
switching signals, they will be finite-time stable with re-
spect to (c1,¢2, T, R),

R . T*logp; .
Ty = Tpi = cpaX 1 , (Z € 55)7 (43)
gl axot] —aT”
logpi; .
Tl;gi S l;kz - Ojﬂ ) (l € Su)v (44)
where T° = Ziess Tis(O,T) and T" = Ziesu Ti"(O,T).

PrOOF Using Theorem 5.1, we can prove that the closed-
loop system (17) is FTSS with respect to (c1,c2, T, R) for
any switching signal:

{(1, 1)  'p (45)

* Pi:|<0’

where (1,1) = Pi(ﬂf—l—@iKi)—i—(ﬁlf +B8,K;)T P, —aP;. Pre-

0
P,_l ’

3

21
and post-multiplying (27) by [P’*

o0 1" [,
* P._l | *

?

cT'p] [Pt 0
S @

Then it can be derived that

‘A P
B *Pi_l <0. (47)
where A = (4] + B,K;) P, + P7H(4] + 3,K)T — P o

Setting X; = Pfl, K;X; = G;, (41) can be obtained, and
the gains of the controller (14) are given by K; = GiXi_l.
O

7. Related works

Some early literature on FTS can be found in [23, 26,
27, 31, 28]. The finite-time Hy control of nonlinear im-
pulsive switching models. They used various Lyapunov
function techniques and the mode-dependent average dwell
time approach for establishing various parametric condi-
tions, demonstrating that the model is finite-time bounded
and finite-time H,, control was addressed by the authors
in [34]. The FTS analysis was carried out by using the
state transition matrix and copositive Lyapunov function

12

for the positive linear systems. Further, sufficient condi-
tions for a class of switching signals with average dwell
time are designed to attain FTS for the switched posi-
tive linear systems done in [35]. Further, the study on
the stochastic SIR model was reported by various research
works [52, 51, 53, 45]. The authors of [36] used Markov
semigroup theory to show that the stochastic SIR epidemic
model with regime switching has a single stable stationary
distribution. This means that, over time, the model will
converge to a steady state in which the number of suscep-
tible individuals, infected individuals, and recovered indi-
viduals remains constant.

Remark 7.1. Linear Matrix Inequalities (LMIs) can be
used in the context of a stochastic SIR epidemic model to
provide stability and robustness guarantees for the control
and management of infectious diseases, such as COVID-
19. For example, LMIs can be used to formulate and solve
optimization problems that aim to minimize the spread of
the disease, subject to constraints on control efforts, re-
source allocation, and other parameters. LMIs can also
be used to analyze the robustness of control strategies to
uncertainties in the model parameters, such as the rate
of transmission, the efficacy of control measures, and the
number of susceptible individuals. Furthermore, LMIs can
be used to design controllers that can respond to changes
in the spread of the disease, such as the introduction of
new strains or mutations, by switching between different
control strategies. These applications demonstrate the ver-
satility and usefulness of LMIs in addressing complex and
uncertain systems and their importance in controlling the
spread of infectious diseases.

8. Numerical simulation of the model

In this section, we check the accuracy and usefulness
of the offered methods for the stabilization problem of
bio-mathematical switching systems with finite-time con-
straints.

8.1. Case study for Covid model in Japan

In this subsection, we use data from newly positive
individuals in Tokyo. Japan has implemented several mea-

sures to control the spread of COVID-19, including widespread

testing, contact tracing, and quarantine measures. The
study used a compartmental model, which divides the pop-
ulation into different compartments based on their disease
status (susceptible, exposed, infected, recovered, etc.). The
model was calibrated using data on the number of reported
cases and deaths in Japan and was used to simulate the
spread of the disease under different scenarios. The re-
sults of the study showed that Japan’s measures were ef-
fective in controlling the spread of the disease, but that
the country was still at risk of a resurgence of cases if the
measures were relaxed too quickly. The study also found
that testing and quarantine measures were more effective
than contact tracing alone in controlling the spread of the



disease. It also highlighted the importance of continuing
to implement measures such as testing, contact tracing,
and quarantine even after the number of cases decreases.
Table 4 shows the numerical values of parameters used in
the simulation.

Parameter Symbol  Value Source
Recruitment rate A 5 [56]
Contact rate Jé; 0.2 [57]
Inhibitory effect k 0.2 Assumed
Natural death rate 1) 0.0111 [58]
Rate of recovery v 0.1 [57]
Disease-related mortality € 0.001  Assumed

Table 4: Default values of the parameters of model (5) with Covid
data.

The S(0) is the initial value of S when R = 0, and
its corresponding time is the start of the infection, ¢t = 0.
Then, S(0) has the form S(0) = N — I(0). Suppose the
initial infected population I(0) is the number of positive
cases on December 20, 2022, which is 15,883 [59] and N =
8336599 [60]. This study would involve the use of state
feedback control theory to model the spread of COVID-
19 and implement control strategies in a finite time. The
following steps could be taken:
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Figure 19: The solution of the stochastic model (5) with initial values
S(0) = 8,320,716, I(0) = 15,883. The parameter values are taken
as in Table 4 and 01,2 = 0.1.
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Figure 20: The evolution in time of the mean of the individuals over
1,000 trajectories. The parameter values are taken as in Table 4 and

e Modeling: Develop a mathematical model of the spread 4, , = 0.1.

of COVID-19 in a specific region or population, tak-
ing into account relevant factors such as the number
of susceptible individuals, the number of infected in-
dividuals, and the number of recovered individuals.

e Analysis: Analyze the stability of the model and de-
termine the equilibrium points.

e Control design: Based on the analysis, design a state
feedback control law that will drive the system to-
wards the desired equilibrium in finite time. This
could involve implementing measures such as reduc-
ing contact rates between individuals, increasing test-
ing and contact tracing, or implementing vaccine dis-
tribution strategies.

e Simulation: Simulate the controlled system and com-
pare the results with the uncontrolled system.

e Implementation: Implement the control strategies in
the real world, monitor the spread of the disease, and
adjust the control strategies as necessary based on
the results.

The following study could provide valuable insights
into the spread of COVID-19 and inform the development
of effective control strategies to mitigate its impact.

8.2. Control of Epidemic Models

The simulation findings are based on the parameter
values as in(4). In Figs. 4-7, the effect of the stochastic
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Figure 21: The evolution in time of the standard deviation of the

individuals over 1,000 trajectories. The parameter values are taken
as in Table 4 and 01,2 = 0.1.

system without a controller is depicted graphically. More-
over, in the simulation reason, the specific parameters of
the biological model are as appeared in (4). The block
diagram of the proposed model is shown in Fig 22.
Choose the values oy = 1.05, 0 = —0.88,¢1 = 1,¢5 =
7,01 = 05,42 = 1.5, T = 15, R = diag{l,1}, ¢ =
diag{1,1}, and the system matrices are get from equa-
tion (10). With these input values, we can obtain ap, =
0.7365,ap, = 0.0347 and the mode-dependent ADT can
be calculated as 7; = 1.9307,7;, = 0.7631. Regarding
Theorem 6.1, we know that for the analysis 7} = 0.5 < 75,
and 73, = 1.3 > 737, the system is FTS. Moreover, the de-
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Figure 22: Schematic diagram of the proposed finite time stability
analysis of SIR model.

signed controller is built so that the investigated stochastic
model (16) is finite-time stable. Solving the linear matrix
inequality (LMI)-based conditions specified in Theorem
6.1 with conventional LMI toolbox software yields a vi-
able solution that is guaranteed by a set of matrices, some
of which are presented below.

—4.0136  2.4093

Kl - 5
| 3.5288  —3.4489
[ —4.1326 2.9775

K2 = )
| 3.8028 —4.1608 |
[ —4.2330 2.3720

K3 - )
| 3.4431 -3.7176 |
[ —2.1799 1.6732

K, =
| 14616 —3.0741 |

25 3 3.5 4

15 2
Time

Figure 23: The wiener process (1000 realizations).

For the sake of simulation, we assume the initial state
z(0) = [-1.5, 2]T. The state responses and associated
control trajectories of the stochastic switching model stud-
ied are shown in Figs. 24-25, respectively, based on these
conditions. As shown in Figure 26, the state trajectories
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Figure 24: State trajectories with multiple initial conditions of the
system (16).
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Figure 26: State trajectories of the system (16).

of the closed-loop system adequately converge to zero even
though in the appearance of switching rules under the sug-
gested control method. Furthermore, the response of the
wiener process (1000 realizations) is shown in Figure 23.
This shows the significance of the proposed finite-time con-
trol strategy. On the other hand, the average dwell time
of the switching signal is calculated as 7, = 1.2210.



9. Conclusions

In this paper, a finite-time control technique has been
presented for stochastic switched linear parameter-varying
(SSLPV) systems, with a focus on epidemic models such
as the SIR model. The article also proposed a method
to control the spread of COVID-19 using this technique.
The method involved simplify the epidemic nonlinear sys-
tems through finite-time stabilization analysis and deter-
mining the effective gain parameters using linear matrix
inequalities (LMIs). Through simulations, the researchers
demonstrated that the proposed control method was ef-
fective in balancing the epidemiological system, and thus
in controlling the spread of COVID-19. The conclusion of
this research showed that the proposed control technique
can be used to effectively control the spread of COVID-19
and other epidemic diseases and that it has the potential
to be applied in real-world situations. In the future, it will
also highlight the limitations and importance of research
and the need for more work in this area.
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1)

2)

3)

4)

5)

The suggested SIR model is quite extensive, and the switched stochastic differential
equations drive its dynamics. When compare to existing works in Epidemic models, we
consider many factors such as finite-time stability, LPV analysis, stochastic disturbance,
control effect, and unknown parameters.

Different from exponential/asymptotic stability analysis on infinite-time interval and
design in the literature. In our paper, the Finite-time (FT) stability criterion of switched
stochastic SIR model is obtained, which is more realistic and theoretical.

Good control system should ensure higher performance in addition to stability. However,
the suggested model makes use of state-feedback control to ensure the performance of the
designed model.

For the FT stability analysis of the proposed system model with switching approaches,
acceptable Lyapunov functional (LF) are developed using integral inequality techniques
and several new suitable criteria, which may be expressed in terms of linear matrix
inequalities (LMIS).

Numerical simulations are provided as a last step to show the efficacy and application of
the ideas presented.
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